#+SETUPFILE: ./meta/setup.org #+TITLE: thi.ng/geom



  • Contents :toc_3_gh:

    • [[#about-the-project][About the project]]
      • [[#leiningen-coordinates][Leiningen coordinates]]
        • [[#latest-snapshot][Latest snapshot]]
        • [[#latest-stable][Latest stable]]
        • [[#additional-dependencies-for-jogl][Additional dependencies for JOGL]]
      • [[#overview][Overview]]
        • [[#example-usage][Example usage]]
        • [[#project-structure][Project structure]]
        • [[#main-features-non-exhaustive-list][Main features (non-exhaustive list)]]
        • [[#api-scope][API scope]]
      • [[#project-structure][Project structure]]
        • [[#core][core]]
        • [[#types][types]]
        • [[#utils][utils]]
        • [[#mesh][mesh]]
        • [[#physics][physics]]
        • [[#svg][svg]]
        • [[#viz][viz]]
        • [[#voxel][voxel]]
        • [[#opengl--webgl][OpenGL & WebGL]]
      • [[#status][Status]]
      • [[#release-history--changelog][Release history & changelog]]
      • [[#contributors][Contributors]]
      • [[#license][License]]
  • About the project

    • Leiningen coordinates
  • ** Latest snapshot #+BEGIN_SRC clojure [thi.ng/geom "1.0.0-RC4"] #+END_SRC

#+BEGIN_SRC clojure [thi.ng/geom "0.0.1178-SNAPSHOT"] #+END_SRC

*** Latest stable #+BEGIN_SRC clojure [thi.ng/geom "0.0.908"] #+END_SRC

*** Additional dependencies for JOGL

If you're intending to use this library's OpenGL functionality under Clojure (not ClojureScript), the following additional native dependencies must be added to your project (for each platform you intend to use):

#+BEGIN_SRC clojure [org.jogamp.gluegen/gluegen-rt "2.3.2" :classifier "natives-macosx-universal"] [org.jogamp.jogl/jogl-all "2.3.2" :classifier "natives-macosx-universal"] #+END_SRC

The full list of supported platform =:classifier='s:

| natives-android-aarch64.jar | | natives-android-armv6.jar | | natives-linux-amd64.jar | | natives-linux-armv6.jar | | natives-linux-armv6hf.jar | | natives-linux-i586.jar | | natives-macosx-universal.jar | | natives-solaris-amd64.jar | | natives-solaris-i586.jar | | natives-windows-amd64.jar | | natives-windows-i586.jar |

** Overview

thi.ng/geom is a comprehensive and modular geometry & visualization toolkit for Clojure/ClojureScript. It provides a large set of purely math & geometry oriented data types, a polymorphic, largely protocol based API to transform/convert types and various ways to create interactive visualizations in SVG, WebGL, OpenGL, both in the browser and in desktop environments.

Embracing Clojure's approach of data transformations, the library's core philosophy is based on a functional approach to generative design tasks with hundreds of hours spent on refining & optimizing the core API for both Clojure & Clojurescript.

Unlike most other open source projects, this project has been developed in a literate programming style and has been in active, regular development since late 2011, currently in its 4th iteration/rewrite cycle.

You're highly encouraged to consult the source code, which contains documentation, examples, diagrams and general usage pattern hints.

This project is part of the [[https://github.com/thi-ng/][thi.ng]] collection of Clojure & Clojurescript libraries and makes uses of several other projects in this collection (see dependencies further below).

*** Example usage

A growing number (currently ~40) of small examples are included in this repo under the =/examples= directory:

  • [[./org/examples/gl/jogl.org][OpenGL demos]] (Clojure)
  • [[./org/examples/gl/webgl.org][WebGL demos]] (Clojurescript + links to live versions)
  • [[./org/examples/svg/demos.org][SVG examples]] (incl. 3D rendered meshes in SVG)
  • [[./org/examples/viz/demos.org][Visualization examples]] (charts, heatmaps, timelines etc.)
  • [[./org/examples/ptf/demos.org][PTF mesh examples]] (mesh skinning & Luxrender)
  • [[./org/examples/voxel/demos.org][Voxel examples]] (isosurface extraction from volumetric data)

Interactive examples:

Growing list of [[http://workshop.thi.ng/][thi.ng workshop]] repositories (These workshops were running on a monthly basis & internationally in 2015/2016):

A preliminary list of other projects using this library:

*** Project structure

Use the diagram below to quickly navigate to any namespace in the project. Nodes in the graph have tooltips with a brief description of each namespace. Note: Due to GH restrictions on SVG files, first click anywhere on the diagram before trying to navigate to a specific namespace.


*** Main features (non-exhaustive list)

  • Comprehensive & optimized 2D/3D vector & matrix algebra / transformations
  • Custom, optimized vector types w/ GLSL style vector swizzling & full Clojure sequence API support
  • Unified, easy-to-learn & extensible core API defined via ~50 polymorphic protocols
  • Unified OpenGL (v3.3+) & WebGL abstractions of common features, shader, buffer & texture utilities
  • Declarative GLSL shader specs and code generation
  • Optional OpenGL/WebGL shader presets based on [[http://thi.ng/shadergraph][thi.ng/shadergraph]]
  • Declarative OpenGL/WebGL FBO-based multi-pass shader pipeline creation & execution tools
  • OpenGL helpers for desktop apps (wrapping [[http://jogamp.org/jogl][JOGL]])
  • React.js component helpers for WebGL
  • 3D SVG mesh renderer with software facet shader support
  • SVG generation API & optional conversion of geom types
  • Declararitve 2D data visualization module with various modes (area, bar, line, scatter, contours, stacks etc., cartesian/polar axes)
  • 35+ custom (mainly immutable) geometry types implementing core protocols
  • Shape analysis (surface area, circumference, distance & volume calculations) for all implemented types
  • 2D/3D intersection & classification checks (vs. point, line, ray, shapes)
  • Access entities as graph-like structures (vertices/edges)
  • 2D/3D platonic entity to 3D polygon mesh conversion (w/ many options)
  • Optimized conversions to OpenGL/WebGL (with attributes, indexed, non-indexed)
  • Flexible & customizable mesh vertex attribute generators
  • Subdivision meshes (Catmull-Clark, Doo-Sabin, Butterfly)
  • Parallel-transport frame sweep mesh generation from point sequences (skinning with arbitrary profiles, incl. profile morphing)
  • 3D Lathe meshes from 2D curves
  • 2D shape extrusions as 3D mesh (solid or walled)
  • Delaunay triangulation of 2D point clouds
  • Tesselation of simple 2D polygons (no holes)
  • Basic SVG == parsing with different segment types
  • Basic insetting of simple 2D polygons (no miter support)
  • Shape subdivision (only lines, triangles, rects, quads, tetrahedrons)
  • Shape boundary sampling (at fixed resolution or uniform distance)
  • Sutherland-Hodgeman clipping of 2D polygons
  • 3D Boolean (CSG) operations on meshes (union, difference, intersection)
  • 3D geometry export (PLY, STL, OBJ, OFF formats)
  • 3D mesh repair tools (T-junctions, unify vertices etc.)
  • 2D/3D particle based Verlet Physics with customizable behaviors & constraints
  • 2D convex hull
  • 2D/3D quadtree/octree (mutable) for fast spatial indexing
  • Automatic curve generation from point seqs (cubic, Chaikin etc.)
  • Unfolding of 3D meshes to 2D (WIP) for digital fabrication ...

*** API scope

Since the core library does only deal with pure "platonic" geometry types, it doesn't directly address any display or rendering functionality at all. However a number of support modules are provided, incl. OpenGL 3/4, WebGL & SVG support, to allow visualizing results and/or exporting generated assets. 2D/3D shape/mesh exporters are provided as well and together with sister libraries like [[https://github.com/thi-ng/luxor][thi.ng/luxor]], it's also possible to generate complete 3D scenes for high quality & high resolution non-realtime rendering using [[https://github.com/LuxRender][Luxrender]] now [[https://luxcorerender.org/][LuxCoreRender]].

Furthermore, providing all functionality under a common API for both Clojure & Clojurescript, makes it trivial to offload heavy operations (e.g. large mesh processing) to the server side.

** Project structure *** core


These namespaces define the core functionality of this library, including the approx. 50 protocols and implementations of fundamental geometry types/functions like 2d/3d vector algebra, matrices, quaternion (+ related convenience constructors & conversions)

*** types


This directory contains all high-level 2d/3d data types with their implementations of the various core protocols. From a user perspective, these namespaces defined here provide most of this project's core functionality.

*** utils


A number of often needed utility functions to deal with point collections, normals, path sampling, triangle properties etc. Also included here are shape intersection tests, curve subdivisions and 2D Delaunay triangulation.

*** mesh


Several tools & operations related to working with 3d meshes, incl. I/O, subdivisions, repair / cleaning, CSG / Boolean mesh merge, mesh generators (polyhedra, lathe etc.)

*** physics


This module provides a simple 2d/3d particle-based physics engine with Verlet integration and support for custom behaviors and constaints, both for individual particles and global. Particles can be connected with springs of varying stiffness as well as made interdependent using positive or negative force fields (attractors).

*** svg


A module to help with building SVG based visualizations of geom entities using hiccup compatible syntax. Includes a customizable 3D mesh renderer w/ software shader support.

*** viz


Declarative, highly customizable 2D data visualization module with ~10 different layout methods, 3 axis types, cartesian and polar domain support. Currently SVG only, but planned to be format-independent.

*** voxel


An experimental implementation of a in-memory sparse voxel tree (SVO) and related functionality to extract isosurface polygon meshes from the tree.

*** OpenGL & WebGL


This module provides a unified API to common OpenGL/WebGL functionality (context creation, shader management & presets, buffer management, textures, FBO etc.), as well as a number of optimized mesh types, conversion & rendering functions, cameras etc. to simplify the use of other geometry types defined in this project with OpenGL, both on the desktop and in the browser. The Clojure version wraps JOGL.

** Status

The project was in active, regular development from late 2011 - summer 2016 during its 4th iteration/rewrite cycle. Originally developed in a Literate Programming style using Emacs & Org-mode, it has recently (May 2018) been decided to revert to a traditional Clojure project setup to encourage more contributions from other interested parties. The original ORG source files are kept for reference in the [[./org/]] directory until further notice.

The library is mature and has been used successfully in several commercial projects over the past 5 years and can be considered stable for most use cases.

A full test suite, website & tutorials are actively being worked on and the various examples are used as test cases as well.

Note: This library heavily relies on the conditional reader syntax of recent Clojure & Clojurescript versions and therefore is not compatible with Clojure versions < 1.7.0...

** Release history & changelog

See [[./CHANGELOG.org][CHANGELOG.org]] for further details.

| Version | Released | Lein coordinates | Tagged Github URL | |-----------+------------+-----------------------------+---------------------| | 1.0.0-RC3 | 2018-06-01 | =[thi.ng/geom "1.0.0-RC3"]= | [[https://github.com/thi-ng/geom/tree/1.0.0-RC3][1.0.0-RC3]] | | 1.0.0-RC2 | 2018-06-01 | =[thi.ng/geom "1.0.0-RC2"]= | [[https://github.com/thi-ng/geom/tree/1.0.0-RC2][1.0.0-RC2]] | | 1.0.0-RC1 | 2018-05-31 | =[thi.ng/geom "1.0.0-RC1"]= | [[https://github.com/thi-ng/geom/tree/1.0.0-RC1][1.0.0-RC1]] | | 0.0.908 | 2015-11-08 | =[thi.ng/geom "0.0.908"]= | [[https://github.com/thi-ng/geom/tree/r908][r908]] | | 0.0.881 | 2015-06-21 | =[thi.ng/geom "0.0.881"]= | [[https://github.com/thi-ng/geom/tree/r881][r881]] | | 0.0.859 | 2015-06-15 | =[thi.ng/geom "0.0.859"]= | [[https://github.com/thi-ng/geom/tree/r856][r859]] | | 0.0.856 | 2015-06-14 | =[thi.ng/geom "0.0.856"]= | [[https://github.com/thi-ng/geom/tree/r856][r856]] | | 0.0.815 | 2015-06-01 | =[thi.ng/geom "0.0.815"]= | [[https://github.com/thi-ng/geom/tree/r815][r815]] | | 0.0.803 | 2015-05-26 | =[thi.ng/geom "0.0.803"]= | [[https://github.com/thi-ng/geom/tree/r803][r803]] | | 0.0.783 | 2015-04-27 | =[thi.ng/geom "0.0.783"]= | [[https://github.com/thi-ng/geom/tree/r783][r783]] | | 0.0.770 | 2015-03-29 | =[thi.ng/geom "0.0.770"]= | [[https://github.com/thi-ng/geom/tree/r770][r770]] | | 0.0.743 | 2015-03-23 | =[thi.ng/geom "0.0.743"]= | [[https://github.com/thi-ng/geom/tree/r743][r743]] | | 0.0.737 | 2015-03-22 | =[thi.ng/geom "0.0.737"]= | [[https://github.com/thi-ng/geom/tree/r737][r737]] | | 0.0-725 | 2015-03-15 | =[thi.ng/geom "0.0-725"]= | [[https://github.com/thi-ng/geom/tree/r725][r725]] | | 0.0-715 | 2015-02-25 | =[thi.ng/geom "0.0-715"]= | [[https://github.com/thi-ng/geom/tree/r715][r715]] | | 0.0-709 | 2015-02-22 | =[thi.ng/geom "0.0-709"]= | [[https://github.com/thi-ng/geom/tree/r709][r709]] | | 0.2.0 | 2014-03-10 | =[thi.ng/geom "0.2.0"]= | [[https://github.com/thi-ng/geom/tree/0.2.0][0.2.0]] |

** Contributors

** License

(c) 2013 - 2018 Karsten Schmidt

This project is open source and licensed under the [[http://www.apache.org/licenses/LICENSE-2.0][Apache Software License 2.0]].


2D/3D geometry toolkit for Clojure/Clojurescript

Geom Info

⭐ Stars 826
🔗 Source Code github.com
🕒 Last Update 8 months ago
🕒 Created 9 years ago
🐞 Open Issues 24
➗ Star-Issue Ratio 34
😎 Author thi-ng