Pydantic Commandline Tool Interface

Turn Pydantic defined Data Models into CLI Tools and enable loading values from JSON files

Requires Pydantic >=1.5.1.

Installation

pip install pydantic-cli

Features and Requirements

  1. Thin Schema driven interfaces constructed from Pydantic defined data models
  2. Validation is performed in a single location as defined by Pydantic's validation model and defined types
  3. CLI parsing is only structurally validating that the args or optional arguments are provided
  4. Enable loading config defined in JSON to override or set specific values
  5. Clear interface between the CLI and your application code
  6. Leverage the static analyzing tool mypy to catch type errors in your commandline tool
  7. Easy to test (due to reasons defined above)

Quick Start

To create a commandline tool that takes an input file and max number of records to process as arguments:

my-tool --input_file /path/to/file.txt --max_records 1234

This requires two components.

  • Create Pydantic Data Model of type T
  • write a function that takes an instance of T and returns the exit code (e.g., 0 for success, non-zero for failure).
  • pass the T into to the to_runner function, or the run_and_exit

Explicit example show below.

import sys

from pydantic import BaseModel
from pydantic_cli import run_and_exit, to_runner

class MinOptions(BaseModel):
    input_file: str
    max_records: int


def example_runner(opts: MinOptions) -> int:
    print(f"Mock example running with options {opts}")
    return 0

if __name__ == '__main__':
    # to_runner will return a function that takes the args list to run and 
    # will return an integer exit code
    sys.exit(to_runner(MinOptions, example_runner, version='0.1.0')(sys.argv[1:]))

Or to implicitly use sys.argv[1:], call can leverage run_and_exit (to_runner is also useful for testing).

if __name__ == '__main__':
    run_and_exit(MinOptions, example_runner, description="My Tool Description", version='0.1.0')

WARNING: Data models that have boolean values and generated CLI flags (e.g., --enable-filter or --disable-filter) require special attention. See the "Defining Boolean Flags" section for more details.

Loading Configuration using JSON

Tools can also load entire models or partially defined Pydantic data models from JSON files.

For example, given the following Pydantic data model:

from pydantic import BaseModel
from pydantic_cli import run_and_exit, DefaultConfig

class Opts(BaseModel):
    class Config(DefaultConfig):
        CLI_JSON_ENABLE = True

    hdf_file: str
    max_records: int = 10
    min_filter_score: float
    alpha: float
    beta: float

def runner(opts: Opts):
    print(f"Running with opts:{opts}")
    return 0

if __name__ == '__main__':
    run_and_exit(Opts, runner, description="My Tool Description", version='0.1.0')

Can be run with a JSON file that defines all the (required) values.

{"hdf_file": "/path/to/file.hdf5", "max_records": 5, "min_filter_score": 1.5, "alpha": 1.0, "beta": 1.0}

The tool can be executed as shown below. Note, options required at the commandline as defined in the Opts model (e.g., 'hdf_file', 'min_filter_score', 'alpha' and 'beta') are NO longer required values supplied to the commandline tool.

my-tool --json-config /path/to/file.json

To override values in the JSON config file, or provide the missing required values, simply provide the values at the commandline.

These values will override values defined in the JSON config file. The provides a general mechanism of using configuration "preset" files.

my-tool --json-config /path/to/file.json --alpha -1.8 --max_records 100 

Similarly, a partially described data model can be used combined with explict values provided at the commandline.

In this example, hdf_file and min_filter_score are still required values that need to be provided to the commandline tool.

{"max_records":10, "alpha":1.234, "beta":9.876}
my-tool --json-config /path/to/file.json --hdf_file /path/to/file.hdf5 --min_filter_score -12.34

Catching Type Errors with mypy

If you've used argparse, you've probably been bitten by an AttributeError exception raised on the Namespace instance returned from parsing the raw args.

For example,

import sys
from argparse import ArgumentParser


def to_parser() -> ArgumentParser:
    p = ArgumentParser(description="Example")
    f = p.add_argument

    f('hdf5_file', type=str, help="Path to HDF5 records")
    f("--num_records", required=True, type=int, help="Number of records to filter over")
    f('-f', '-filter-score', required=True, type=float, default=1.234, help="Min filter score")
    f('-g', '--enable-gamma-filter', action="store_true", help="Enable gamma filtering")
    return p


def my_library_code(path: str, num_records: float, min_filter_score, enable_gamma=True) -> int:
    print("Mock running of code")
    return 0


def main(argv) -> int:
    p = to_parser()
    pargs = p.parse_args(argv)
    return my_library_code(pargs.hdf5_file, pargs.num_record, pargs.min_filter_score, pargs.enable_gamma_filter)


if __name__ == '__main__':
    sys.exit(main(sys.argv[1:]))

The first error found at runtime is show below.

Traceback (most recent call last):
  File "junk.py", line 35, in <module>
    sys.exit(main(sys.argv[1:]))
  File "junk.py", line 31, in main
    return my_library_code(pargs.hdf5_file, pargs.num_record, pargs.min_filter_score, pargs.enable_gamma_filter)
AttributeError: 'Namespace' object has no attribute 'num_record'

The errors in pargs.num_records and pargs.filter_score are inconsistent with what is defined in to_parser method. Each error will have to be manually hunted down.

With pydantic-cli, it's possible to catch these errors by running mypy. This also enables you to refactor your code with more confidence.

For example,

from pydantic import BaseModel

from pydantic_cli import run_and_exit


class Options(BaseModel):
    input_file: str
    max_records: int


def bad_func(n: int) -> int:
    return 2 * n


def example_runner(opts: Options) -> int:
    print(f"Mock example running with {opts}")
    return 0


if __name__ == "__main__":
    run_and_exit(Options, bad_func, version="0.1.0")

With mypy, it's possible to proactively catch this types of errors.

 mypy pydantic_cli/examples/simple.py                                                                                                                                                                  ✘ 1 
pydantic_cli/examples/simple.py:36: error: Argument 2 to "run_and_exit" has incompatible type "Callable[[int], int]"; expected "Callable[[Options], int]"
Found 1 error in 1 file (checked 1 source file)

Defining Boolean Flags

Boolean options in Pydantic data models require special attention.

By default, when defining a model with a boolean flag, a "enable" or "disable" flag will be added depending on the default value.

For example.

from pydantic import BaseModel

from pydantic_cli import run_and_exit


class Options(BaseModel):
    input_file: str
    run_training: bool = True
    dry_run: bool = False


def example_runner(opts: Options) -> int:
    print(f"Mock example running with {opts}")
    return 0


if __name__ == "__main__":
    run_and_exit(Options, example_runner, description=__doc__, version="0.1.0")

Since run_training has a default value of True, a commandline flag of --disable-run_training will be created. Enabling this from the commandline would set run_training in the Pydantic data model to False.

Similarly, dry_run has a default value of False and a commandline flag of --enable-dry_run will be created. Enabling this flag will set dry_run to True.

The default prefixes of the boolean flags are (--enable-, --disable-) and can configured in the configuration of the data model.

For example,

from pydantic import BaseModel

from pydantic_cli import DefaultConfig


class Options(BaseModel):
    class Config(DefaultConfig):
        CLI_BOOL_PREFIX = ('--yes-', '--no-')

    input_file: str
    run_training: bool = True
    dry_run: bool = False

Similar to the non-boolean flags, the custom CLI options can be set. However, there's an important difference.

Custom Boolean flags must be configured with BOTH True and False values with a type of Tuple[str, str].

For example,

from pydantic import BaseModel
from pydantic_cli import DefaultConfig

class Opts(BaseModel):
    class Config(DefaultConfig):
        CLI_EXTRA_OPTIONS = {'dry_run': ('--enable-dry-run', '--no-dry-run')}

    dry_run: bool = False

Customization and Hooks

If the description is not defined and the Pydantic data model fields are tersely named (e.g., 'total', or 'n'), this can yield a call to --help that is quite minimal (due to the lack of metadata). However, verbosely named arguments can often be good enough to communicate the intent of the commandline interface.

For customization of the CLI args, such as max number of records is -m 1234 in the above example, there are two approaches.

  • The first is the quick method that is a minor change to the core Config of the Pydantic Data model.
  • The second method is use Pydantic's "Field" metadata model is to define richer set of metadata. See Field model in Pydantic more details.

Customization using Quick Model

We're going to change the usage from my-tool --input_file /path/to/file.txt --max_records 1234 to my-tool -i /path/to/file.txt -m 1234 using the "quick" method by customizing the Pydantic data model "Config".

This only requires adding CLI_EXTRA_OPTIONS to the Pydantic Config.

from pydantic import BaseModel

class MinOptions(BaseModel):

    class Config:
        CLI_EXTRA_OPTIONS = {'input_file': ('-i,), 'max_records': ('-m', ) }

    input_file: str
    max_records: int = 10

You can also override the "long" argument. However, note this is starting to add a new layer of indirection on top of the fields defined in the Pydantic model. For example, 'max_records' maps to '--max-records' at the commandline interface and perhaps might create annoying inconsistencies.

from pydantic import BaseModel

class MinOptions(BaseModel):

    class Config:
        CLI_EXTRA_OPTIONS = {'input_file': ('-i, '), 'max_records': ('-m', '--max-records')}

    input_file: str
    max_records: int = 10

Customization using Quick Model using Schema Driven Approach using Pydantic Field

from pydantic import BaseModel, Field


class Options(BaseModel):

    class Config:
        validate_all = True
        validate_assignment = True

    input_file: str = Field(
        ..., # this implicitly means required=True
        title="Input File",
        description="Path to the input file",
        required=True,
        extras={"cli": ('-f', '--input-file')}
    )

    max_records: int = Field(
        123,
        title="Max Records",
        description="Max number of records to process",
        gt=0,
        extras={'cli': ('-m', '--max-records')}
    )

This will metadata (e.g., title, description) will be communicated in the --help of the commandline tool.

Hooks into the CLI Execution

There are three core hooks into the customization of CLI execution.

  • exception handler (log or write to stderr and map specific exception classes to integer exit codes)
  • prologue handler (pre-execution hook)
  • epilogue handler (post-execution hook)

Both of these cases can be customized to by passing in a function to the running/execution method.

The exception handler should handle any logging or writing to stderr as well as mapping the specific exception to non-zero integer exit code.

For example:

import sys

from pydantic import BaseModel
from pydantic_cli import run_and_exit


class MinOptions(BaseModel):

    class Config:
        CLI_EXTRA_OPTIONS = {'input_file': ('-i, '), 'max_records': ('-m', '--max-records')}

    input_file: str
    max_records: int = 10


def example_runner(opts: MinOptions) -> int:
    return 0


def custom_exception_handler(ex) -> int:
    exception_map = dict(ValueError=3, IOError=7)
    sys.stderr.write(str(ex))
    exit_code = exception_map.get(ex.__class__, 1)
    return exit_code


if __name__ == '__main__':
    run_and_exit(MinOptions, example_runner, exception_handler=custom_exception_handler)

A general pre-execution hook can be called using the prologue_handler. This function is Callable[[T], None], where T is an instance of your Pydantic data model.

This setup hook will be called before the execution of your main function (e.g., example_runner).

import sys
import logging

def custom_prologue_handler(opts) -> None:
    logging.basicConfig(level="DEBUG", stream=sys.stdout)

if __name__ == '__main__':
    run_and_exit(MinOptions, example_runner, prolgue_handler=custom_prologue_handler)

Similarly, the post execution hook can be called. This function is Callable[[int, float], None] that is the exit code and program runtime in sec as input.

from pydantic_cli import run_and_exit


def custom_epilogue_handler(exit_code: int, run_time_sec:float):
    m = "Success" if exit_code else "Failed"
    msg = f"Completed running ({m}) in {run_time_sec:.2f} sec"
    print(msg)


if __name__ == '__main__':
    run_and_exit(MinOptions, example_runner, epilogue_handler=custom_epilogue_handler)

SubParsers

Defining a subparser to your commandline tool is enabled by creating a container SubParser dict and calling run_sp_and_exit

import typing as T
from pydantic import BaseModel, AnyUrl



from pydantic_cli.examples import ExampleConfigDefaults
from pydantic_cli import run_sp_and_exit, SubParser


class AlphaOptions(BaseModel):

    class Config(ExampleConfigDefaults):
        CLI_EXTRA_OPTIONS = {'max_records': ('-m', '--max-records')}

    input_file: str
    max_records: int = 10


class BetaOptions(BaseModel):

    class Config(ExampleConfigDefaults):
        CLI_EXTRA_OPTIONS = {'url': ('-u', '--url'),
                             'num_retries': ('-n', '--num-retries')}

    url: AnyUrl
    num_retries: int = 3


def printer_runner(opts: T.Any):
    print(f"Mock example running with {opts}")
    return 0


def to_runner(sx):
    def example_runner(opts) -> int:
        print(f"Mock {sx} example running with {opts}")
        return 0
    return example_runner


def to_subparser_example():

    return {
        'alpha': SubParser(AlphaOptions, to_runner("Alpha"), "Alpha SP Description"),
        'beta': SubParser(BetaOptions, to_runner("Beta"), "Beta SP Description")}


if __name__ == "__main__":
    run_sp_and_exit(to_subparser_example(), description=__doc__, version='0.1.0')

Configuration Details and Advanced Features

Pydantic-cli attempts to stylistically follow Pydantic's approach using a class style configuration. See `DefaultConfig in ``pydantic_cli' for more details.

import typing as T

class DefaultConfig:
    """
    Core Default Config "mixin" for CLI configuration.
    """

    # value used to generate the CLI format --{key}
    CLI_JSON_KEY: str = "json-config"
    # Enable JSON config loading
    CLI_JSON_ENABLE: bool = False

    # Set the default ENV var for defining the JSON config path
    CLI_JSON_CONFIG_ENV_VAR: str = "PCLI_JSON_CONFIG"
    # Set the default Path for JSON config file
    CLI_JSON_CONFIG_PATH: T.Optional[str] = None
    # If a default path is provided or provided from the commandline
    CLI_JSON_VALIDATE_PATH: bool = True

    # Can be used to override custom fields
    # e.g., {"max_records": ('-m', '--max-records')}
    # or {"max_records": ('-m', )}
    CLI_EXTRA_OPTIONS: T.Dict[str, CustomOptsType] = {}

    # Customize the default prefix that is generated
    # if a boolean flag is provided. Boolean custom CLI
    # MUST be provided as Tuple[str, str]
    CLI_BOOL_PREFIX: T.Tuple[str, str] = ("--enable-", "--disable-")

    # Add a flag that will emit the shell completion
    # this requires 'shtab'
    # https://github.com/iterative/shtab
    CLI_SHELL_COMPLETION_ENABLE: bool = False
    CLI_SHELL_COMPLETION_FLAG: str = "--emit-completion"

AutoComplete leveraging shtab

There is support for zsh and bash autocomplete generation using shtab

The optional dependency can be installed as follows.

pip install "pydantic-cli[shtab]"

To enable the emitting of bash/zsh autocomplete files from shtab, set CLI_SHELL_COMPLETION_ENABLE: bool = True in your data model Config.

Then use your executable (or .py file) emit the autocomplete file to the necessary output directory.

For example, using zsh and a script call my-tool.py, my-tool.py --emit-completion zsh > ~/.zsh/completions/_my-tool.py. By convention/default, the executable name must be prefixed with an underscore.

When using autocomplete it should looks similar to this.

> ./my-tool.py --emit-completion zsh > ~/.zsh/completions/_my-tool.py
Completed writing zsh shell output to stdout
> ./my-tool.py --max
 -- option --
--max_filter_score  --  (type:int default:1.0)
--max_length        --  (type:int default:12)
--max_records       --  (type:int default:123455)
--max_size          --  (type:int default:13)

See shtab for more details.

Note, that due to the (typically) global zsh completions directory, this can create some friction points with different virtual (or conda) ENVS with the same executable name.

More Examples

More examples are provided here

Limitations

  • Positional Arguments are not supported. This created too much friction with the JSON file loading feature which could turn positional required arguments into optional values which fundamentally could changed the commandline interface.
  • Pydantic BaseSettings to set values from dotenv or ENV variables. This feature of Pydantic is not supported in pydantic-cli.
  • Pydantic has a perhaps counterintuitively model that sets default values based on the Type signature. For Optional[T] with NO default assign, a default of None is assigned. This can sometimes yield suprising commandline args generated from the Pydantic data model.
  • Currently only support flat "simple" types (e.g., floats, ints, strings, boolean). There's no current support for List[T] or nested dicts.
  • Leverages argparse underneath the hood and argparse is a bit thorny of an API to build on top of.

Pydantic Cli

Turn Pydantic defined Data Models into CLI Tools

Pydantic Cli Info

⭐ Stars 15
🔗 Source Code github.com
🕒 Last Update a year ago
🕒 Created 2 years ago
🐞 Open Issues 0
➗ Star-Issue Ratio Infinity
😎 Author mpkocher